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An algorithm for the simulation of the 3-dimensional random field Ising model 
with a binary distribution of the random fields is presented. It uses multi-spin 
coding and simulates 64 physically different systems simultaneously. On one 
processor of a Cray YMP it reaches a speed of 184 million spin updates per 
second. For smaller field strength we present a version of the algorithm that can 
perform 242 million spin updates per second on the same machine. 

KEY WORDS:  Monte Carlo simulation; multi-spin coding; random field 
Ising model. 

1. INTRODUCTION 

There are many open questions in connection with the random field Ising 
model (RFIM) (see ref. 1 for a recent review on this subject). It has been 
shown rigorously that in more than two dimensions the RFIM possesses 
a second-order phase transition at finite temperature for small enough 
field strength. Nevertheless there is still much uncertainty concerning the 
exponents characterizing this transition in three dimensions. Results of 
computer simulations and experimental data seem to contradict each other 
if one tries to harmonize them with a proposed scaling theory (see ref. 1 for 
details). We have the impression that more extensive simulation might help 
to clarify this situation. 

As a first step into this direction we present here an effective algorithm 
that can perform Monte Carlo simulations of the RFIM with a speed of 
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184 million spin updates per second (MUPS)  on one processor of a Cray 
YMP. It was developed out of the fast vectorized algorithm for the simula- 
tion of the three-dimensional Ising model, which was originally invented by 
N. Ito, (2) reaching a speed of 2190 M U P S  on a Fujitsu VP 2600/10 and of 
800 MUPS on the NEC supercomputer. Later  it was improved by Heuer (3) 
and implemented on a Cray YMP, where it reached a speed of 305 MUPS 
on one processor of a Cray YMP. 

The main idea we followed in the construction of the code was to con- 
sider separately the two cases of spin parallel/antiparallel to the external 
field. Therefore (in the case of a binary distribution for the fields) one 
cannot do worse than double the time needed for the innermost loop in the 
RFIM in comparison to the pure case considered in ref. 3. Taking into 
account the fact that we use periodic boundary  conditions instead of helical 
or self-consistent boundary conditions (which gives a slowing down of 
approximately 10 %), our code has surpassed this minimal requirement by 
about 30 %. The speed of our algorithm has to be compared with the 
following data: 8 years ago the RFIM was simulated with a speed of 
1 MUPS on a CDC 176 computer (4) and 1 year later the distributed array 
processor (DAP) at Queen Mary College, London, was able to update 
14.6 million spins per second. (s) 

The exact definition of the model that  the algorithm is able to simulate 
is as follows. We consider a simple cubic lattice of linear dimension L with 
N = L �9 L �9 L Ising spins S,- = _ 1. The Hamiltonian of the RFIM is 

H =  

where the first sum extends 
second sum over all sites. 
ourselves to the case J =  1. 
obeying a binary probability 

-J  E s ,s , -Eh,s ,  (1) 
( i j )  i 

over all nearest neighbor pairs ( / j )  and the 
By rescaling the temperature, we confine 

The external fields hl are random variables 
distribution 

P(hi) = p .  6 ( h i -  h) + (1 - p ) .  6(h~ §  (2) 

where p e [0, 1 ]. Most of the literature deals with p = 1/2. Note  that p = 1 
or p = 0 yields the 3D Ising model in a homogeneous external field. For  the 
version of the algorithm we present in this paper the field strength h has 
to be smaller than 2, i.e., h e  [0, 2];  for higher field values slight modifica- 
tions have t o  be incorporated. If one restricts oneself to field strength 
smaller than one (h~< 1), an even faster (242 million spin updates per 
second) version of the algorithm can be used, which is described in the 
Appendix. 

Since much of the code is a straightforward generalization of Heuer's 
algorithm, (3) we do not spend too much time in explaining the bulk of it. 
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Only the innermost loop has to be described in detail, which is done in 
Section 2. Furthermore, we want to focus some attention on the following 
point. The algorithm uses multispin coding and simulates 64 different 
systems at once. The essential speedup in comparison to older algorithms 
is achieved by using the same random number for several systems. In the 
3D Ising model one has to simulate the 64 systems at different tem- 
peratures, otherwise one would run into difficulties, since all 64 systems are 
identical, apart from the initial condition. In our case, the RFIM, we deal 
with 64 physically different systems because of the different realizations of 
the disorder, i.e., random field configurations. This is very convenient, since 
at the end of the simulations we have to perform the average over many 
disorder realizations anyway. Therefore we choose the same temperature 
for each system and collect at the end the data for magnetization, energy, 
etc., until the desired number of realizations (most conveniently a multiple 
of 64) is reached. 

A few words on the whole program: First one initializes the random 
number generator (which is a shift-register R N G / t  la Tausworth~6)), then 
the initial spin configurations of all 64 systems (each bit in a computer 
word corresponds to one spin in one system). Now the random field con- 
figurations are generated--a bit in a computer word is one if the random 
field at a particular site of one system is positive, otherwise it is zero. 
Furthermore one has to initialize the demon arrays described below and 
also the nearest-neighbor arrays. We use periodic boundary conditions 
since then finite-size scaling is expected to be easier. To achieve vectoriza- 
tion one has to split the whole system into two sublattices of size N/2.  

Therefore the linear dimension L of the cube has to be an even number. 
After the initializations everything is set to perform the update algo- 

rithm according to Metropolis, where a spin is flipped with a probability 

wnip = min {exp ( -  fl z/E), 1 }, A E =  E(  - S i )  - E ( S i )  (3) 

The subroutine sweep described in Section 2 updates sequentially all spins 
in one sublattice. Hence for each MC step the routine sweep is called twice: 
once for the update of the first sublattice and once for the second. There- 
fore one needs also two different nearest-neighbor arrays for the x direction 
in the different sublattices. For  measurements one needs an effective 
bit-counting routine, which can be found in ref. 3. 

2. D E S C R I P T I O N  OF T H E  I N N E R M O S T  L O O P  

The innermost loop is listed in Fig. 1. It is written in Fortran 77 and 
vectorizes on the Cray YMP. We tried to use a similar notation as in the 
literature ~2'3'7) in order to make comparisons easier. Because we use a 
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CDIR$ 

subroutine sweep (s,sneighb,h,nxm,nxp,nym,nyp,nzm,nzp,N) 

integer s(N),sneighb(~),h(N) 
integer m(N),nxp(N),nym(N),nyp(N),nzm(N),nzp(N) 
integer spin,bl,b2,b3 
parameter (irbit=18) 
parameter (irlst = 2**irbit-1) 
common /rnddim/ ir(O:255),irndx(2,0:255) ,/counter 
common /rngdl/ ixpl(O:irlst),ixp2(O:irlst),ixp3(O:irlst), 
I ixml(O:irlst),i~m2(O:irlst) 

IVDEP 

do i00 i = 1,N 

spin = s(i) 
il = xor( spin, sneighb(mcm(i)) ) 
22 = xor( spin, sneighb(r, xp(i)) ) 
i3 = xor( spin, sneighb(nym(i)) ) 
i4 = xor( spin, sneighb(nyp(i)) ) 
i5 = xor( spin, sneighb(nzm(i)) ) 
i6 = xor( spin, sneighb(nzp(i)) ) 
ih = xor( spin, h(i) ) 

j2 = xor( il, 22 ) 
jl = xor( j2, i3 ) 
j2 = xor( and( il, i2), and( j2, i3 ) 
j 4  = xor( i4, 25 ) 
j3 = xor( j4, 26 ) 
j4 = xor( and( i4, iS), and( j4, i6 ) 

bl = and( j l ,  j3 ) 
b3 = x o r (  j i ,  j 4  ) 
b2 = xor( b3, bl ) 
b3 = xor( and( j2, j4 ), and( b3, bl) 
bl = xor( jl, j3 ) 

index = i + icounter 
j = and( index, 255 ) 
irt = xor(ir(irndx(1,j)), ir(irndx(2,j)) ) 
Jr(j) = irt 

ix1  = i x p l ( i r t )  
ix2  = i x p 2 ( i r l : )  
ix3  = i x p 3 ( i r t )  
idO = and (  b l ,  ix1  ) 
idO = x o r ( a n d ( b 2 , i x 2 ) ,  a n d ( x o r ( b 2 , i x i ) , i d O )  ) 
idO = or( idO, b3 ) 
idO = o r (  idO,  ix3  ) 

b3 = o r (  b3 ,  and(  b2 ,  b l )  ) 
b2 = x o r (  b2 ,  b l  ) 
b l  = n o t  ( b l  ) 

Fig.  1. P r o g r a m  l i s t ing  o f  t h e  s u b r o u t i n e  sweep,  w h i c h  is d e s c r i b e d  in t he  text .  
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i x l  = i r a a l ( i z~ )  
ix2 = ixm2(irt) 

i d l  = and( bl, i x l  ) 
idl= xor(and(b2,ix2), and(xor(b2,ix2),idl) ) 

idl = or( idl, b3 ) 

id = or (and(idO,not(ih)) , and(idi,ih) ) 

s(i) = xor(s(i), id ) 

100 continue 

icotmte= = icounter + N 

return 

end 

Fig. 1. (Continued) 

recursive algorithm to generate the random numbers, the compiler directive 
"ignore vector dependency" -CVDEP occurs. Since the vector length of the 
Cray computer systems is 64, this directive has no influence on the correct- 
ness of the code (see ref. 3 for details). 

The subroutine sweep updates the spins s ( i )  (i = 1,..., N) of one sub- 
lattice; therefore N equals one half the total number of spins. The neighbor- 
ing spins in the second sublattice are stored in s n e i g h b ( ) ,  and the ran- 
dom fields are stored in h().  The integers nxm(i), nxp( i ) ,  nym(i), 
nyp(i) ,  nzm(i), and nzp( i )  are the indices from the six nearest neighbors 
of s ( i )  (note that we use periodic boundary conditions). The array iv( ) 
contains 256 random integers between 0 and i r l a t ,  each composed of 
i r b i t  random bits. It is the essential part of the shift-register random 
number generator. The function of the demon arrays i x p l ( ) ,  ixp2( ) ,  
ixp3() ,  ixml( ) ,  and ixm2( ) will be described later. 

Let us assume that the arrays s(),  s n e i g h b ( ) ,  and h ( )  are bit- 
arrays--ignoring the fact that we deal with 64 bits at once and in parallel. 
The six bits i!,..., i6 (lines 13-18) contain the information about the 
orientation of spin s ( i )  with respect to its six neighbors. The bit is one if 
s ( i)  is antiparallel to the corresponding neighbor and it is zero otherwise. 
The bit i h  (line 19) is one if the spin s ( i )  and the random field h( i )  are 
pointing in the opposite direction. 

In lines 20.30 the number of antiparallel pairs 2? = i !  + --- + i6 is 
calculated. The summation is done by adding i l ,  i2, and i3  first arid 
storing the result in binary code into the two bits j i and j2  
( i l  + i2 + i3 =2  ~ �9 j2  +20 * j l ,  see lines 20-22) and then adding i4, 
i5, and i6, which yields j 3  and j 4  (see lines 23-25). In lines 26--30 the 
results of these two summations are added and since it is a number 
between 0 and 6, one needs three bits (b3, b2, b l )  to store this informa- 
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tion in binary code. Their meaning is given by --Y7=22. b5 + 2 1 .  b2 + 
20 * bl. 

The random number i r t ,  which is needed for the update of all 64 
spins s ( i )  in the different systems, is generated in lines 31-34. To save 
memory, the random numbers lie on a wheel with 256 spokes, which is 
enforced by the periodic neighbor array i r n d x (  ) (see ref. 3 for details). 

To make a flip decision, one has now to consider the possibilities 
i h  = 0 (spin and random field pointing in the same direction) and i h  = 1 
(spin and random field pointing in opposite directions) separately. The case 
i h = 0  is considered first (lines 35-41). A look at TableI may help to 
explain the procedure. There we define p 0 = e x p [ - ( 1 2 + 2 h ) / ~ ] ,  pl = 
exp[ - (8 + 2h)/~], P2 = exp[- - (4 + 2h)/3], and P3 = exp[ - 2h/~]. One reads 
the table in the following way: If, for instance, 27=0, all six nearest 
neighbors are parallel to spin s ( i  ) and the energy difference from the state 
with s ( i )  flipped would be AE= 12 + 2h, which means that s ( i )  should be 
flipped with a probability Po = e x p [ -  (12 + 2h)/~]. Analogous comments 
hold for 27 = 1,..., 6. 

Here it is important that the field strength h is not greater than 2, 
otherwise also the energy difference AE in the case 27 = 4 would be positive 
(AE=-4+2h>0 for h > 2 ) ,  which would result in a flip probability 
smaller than one. Nevertheless, for h > 2  the algorithm can easily be 
modified. In fact, one has to change the algorithm for each of the cases 
h e  [2, 4], h~ [4, 6],  and h > 6  in a different way, but for physical reasons 
a field strength larger than two is not advisable to simulate. 

Now we construct a flip bit i d 0  by adding to the sum 27 a demon 
number ixpe {0, 1,..., 4}, which is composed of 3 demon bits i x ! ,  ix2,  
and ix3  via ixp=22* i x 3 + 2 1  * i x 2 + 2 ~  i x l .  If (27+ixp)>14, then 
the spin has to be flipped, which means i d 0 = l ,  otherwise i d 0 = 0 .  

Table I. Lookup Table for the Transition Probabilities 
and the Demon ixp in the Case i h - - 1  

0 12 + 2h Po 4 
1 8 + 2 h  Pl 3 
2 4 + 2h P2 2 
3 2h P3 1 

4 < 0  1 0 
5 < 0  1 0 
6 < 0  1 0 

~Z AE Flip probability ixp 
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Certainly idO = 1 if b3 is one (line 40), and also if ix3 is one (line 41). If 
b3 and i x p 3  are both zero, there is still the possibility that the following 
addition yields an overflow bit: 

( b2  bZ 
+ ( ix2 ixl (4) 

( idO �9 �9 ) 

which is done in lines 38-39. First (line 38) one checks whether the addi- 
tion of b l  and i x l  is greater than 1, which yields an overflow bit for the 
sum of the lowest bits of the two numbers 27 and ixp. Then (line 39) one 
takes this overflow bit and adds it to the sum of bE and ix2.  This gives 
an overflow bit for the sum of the two smallest bits of each of the two num- 
bers 27 and ixp. If this overflow bit is one, it means that the sum is greater 
than 4, as desired. 

From Table I we also learn with which probablities the demon num- 
ber ixp has to be set to the different values: it has to be 4 with probability 
P0, 3 with probability Pl - P o ,  2 with probability Pz-Pl ,  1 with probability 
P 3 - P 2  and 0 with probability 1 - P 3 .  If one works with a computer that 
has only a very limited memory capacity, one can operate with if instruc- 
tions in an obvious way--here  we use a time-saving trick (but also memory 
gobbling; see ref. 3): We define the arrays ixpl(), ixp2(), and ixp3( ) 
as shown in TableII ,  where i r l s t = 2 ~ b l t - 1  and k o = i r l s g * p 0 ,  
k 1 = irlst * (pl --Po), k2 = irlst * (P2--Pl) ,  k 3 = irlst * (P3 -P2)-  
Note that the number of bits i r b i t  determines the accuracy of the 
probabilities: here they have only i r b i t  significant bits and therefore 
i r b i t  should not be smaller than 17. 

Remember that the shift-register random number generator in line 33 
produces an integer i r t  uniformly distributed between 0 and i r l s t  and 
therefore ixp=2 z , i x p 3 ( i r t ) + 2  ~,ixp2(irt)+2 ~ has 
the desired feature to be four with probability Po, three with probability 
( P l - P o ) ,  etc. 

Table II. Def in i t ion of the Arrays ixpl(), ixp2(), and ixp3( ) 

irt ixp3(irt) ixp2(irt) ixpl(irt) ~--ixp 

0,. . . ,  k o - -  1 1 0 0 4 

k o ..... k 1 - I 0 1 1 3 

k I ..... k 2 - 1 0 1 0 2 

kz , . . . ,  k 3 - 1 0 0 1 1 

k3,..., irlst 0 0 0 0 

822/70/3-4.36 
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Table III. Lookup Table for the Transition Probabilities 
and the Demon i xm in the Case i h = 0  

Z'  AE Flip probabili ty ixm 

1 12 - 2h p~ 3 
2 8 - 2h /1 2 
3 4 - 2h p~ 1 

4 < 0  I 0 
5 < 0  1 0 
6 < 0  1 0 
7 < 0  1 0 

Now that we have calculated the flip bit that has to be used in the case 
i h  = 0, we come to the construction of the flip bit i d l  for the possibility 
i h =  1. First we compute Z ' = Z +  1 (see lines 42-44; the reason for this 
will soon be clear) and overwrite the bits b3, b2, and b l  with this result 
in binary code. Now see YableIII, where p ~ = e x p [ - ( 1 2 - 2 h ) / ~ ] ,  P'I= 
exp[ - (8 - 2h)/~], and p ;  = exp[ - (4 - 2h)p] .  Once again it is important 
that the field strength h is smaller than 2, otherwise the probability p;  
would be greater than one. The table has to be read in complete analogy 
to Table I. Again we add a demon number ixm to Z '  and the flip bit i d l  
is one if (Z' + ixm) >i 4, which is certainly the case if b3 = 1 (line 49). Again 
i d l  is also one if the same addition as in (4) yields an overflow bit 
(lines 47-48). 

The arrays i x m l (  ) and ixm2( ) are defined as shown in Table IV, 
t ! / t v where k o = i r l s t * p o ,  k ] = i r l s t *  (Po-P0) ,  and k2 i r l s t *  

(P'2-P]). Note that in contrast to the case i h = 0 ,  here ixm ranges only 
from 0 to 3 (which saves one array of length i r l s t  ), since we already 
added a one to Z. 

Table IV. Def in i t ion of the Arrays i xml (  ) and ixm2( ) 

irt ixm2(irt) ixml(irt) ~ i x m  

o,..., ~ , -  1 1 1 3 
k~,..., k] - 1 1 0 2 

k~ ..... irlst 0 0 0 
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Now we construct the proper spin-flip bit i d  (line 50) via 

~ i d 0  if i h = 0  
id=[idl if ih=l (5) 

which is slightly faster than id=xor(idO, and(ih, xor(idO, idl))) 
proposed in ref. 8 for the same operation. Finally, the spin s(i) is flipped 
if and only if i d  is one (line 51). Instead of completing a cycle on the 
above-mentioned wheel with 256 spokes for the RNG after each sweep 
through one sublattice, we use a counter i e o u n t e r  that starts the wheel 
at the correct position each time the subroutine sweep is called. 

3. S U M M A R Y  

We have presented a fast vectorized algorithm for the MC simulation 
of the three-dimensional random field Ising model. We would like to point 
out that this algorithm is also very fast on nonvector machines. In this case 
one can also dispense with the tricks that have to be used to achieve vec- 
torization (like the two sublattices). By making the necessary modifications 
for 32-bit integers, one can implement it also very efficiently on special- 
purpose computers, parallel computers, and transputer systems. In fact this 
is the way we used it to perform very extensive simulations of the RFIM 
(the results of this investigation will be reported elsewhere(9)). 

Let us only mention that the equilibration time of the random field 
Ising systems depends strongly on the strength of the external fields. For 
small fields (where one can use the faster version of the algorithms pre- 
sented in this paper) the equilibration in finite systems is nearly as fast as 
in the pure Ising model--but very strong crossover effects are expected and 
the separation of the critical behavior of the disordered system from the 
pure system is difficult. Therefore we preferred higher field strength (where 
one has to use the slightly slower algorithm), but in this case the equilibra- 
tion of the systems takes much longer, even for small system sizes. This 
makes the need of a fast algorithm for the MC simulation of the RFIM 
obvious--at  least as long as no efficient cluster algorithm is available. 

A P P E N D I X  

Here we present a version of the algorithm that can be used in the case 
of h ~< 1 and which is about 31% faster. The reason for this speedup lies in 
the fact that one does not need to consider the two cases i h  = 0 and i h  = 1 
separately. In fact, for the version we want to present one has to replace 
lines 38-50 of the code in Fig. 1 by the following four lines: 
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38' id = or(ih, ixl) 

39' id = xor(and(bl, ix2), and(id, xor(bl, ix2))) 

40' id = xor(and(b2, ix3), and(id, xor(b2, ixZ))) 

41'  id = or(id, bZ) 

The ar rays  i x m l ( )  and i x m 2 ( )  are no longer  needed. Also the 
variables i dO  and i d l  are superfluous.  To  explain the above  modifica-  
tions, consider  Table  V, where we have  defined 

~ = 2 . Z ' + i h + l  

and 

(A1) 

b~ = exp[ - 3  ~ E ( 2 ) ]  

We observe that  only as long as h ~< 1 are the flip p r o b a b i l i t i e s p z  
monoton ica l ly  increasing with X, which is necessary for the a lgor i thm to 
work. T o  construct  the flip bit i d we add to -~ a d e m o n  n u m b e r  ix  e 

{0, 1,..., 7}, which is composed  of 3 d e m o n  bits i x l ,  i x 2 ,  and i x 3  via 
i x = 2 2 ,  i x 3 + 2 1  �9 i x 2  + 2 ~  i x l .  I f  ( X + i x ) ~ >  8, the spin has to be flip- 
ped, mean ing  i d  = 1. Obvious ly  i d  = 1 if b3  = 1 (line 41').  The  only o ther  
possibili ty for i d to become one is an overflow bit on  the following 
addit ion:  

( b2 bZ iX ) 
+ ( ix$ ix2 ixl ) 

(A2) 
+ 1 

( id �9 �9 �9 ) 

Table V. Lookup Table for the Transition 
Probabilities and the Demon ix in the Case 

of Small Field Strength h < 1 

AE Flip probability ix 

8 <0 1 0 
: ~ : ". 

~ <0 i 0 

1 12 + 2h /31 7 
2 12 - 2h /32 6 
3 8 + 2h /33 5 
4 8 - 2h /34 4 
5 4 + 2h /33 3 
6 4 - 2h /36 2 
7 2h /37 .1 
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Table VI. Definition of the Arrays i xp l ( ) ,  ixp2(),  and ixp3( ) 
in the Case of Small Field Strength h < l  

1073 

irt ixp3(irt) ixp2(irL) ixpl(irt) ~ 

0,..., Tq-- 1 1 1 I 7 
~i ..... ~2-  1 i 1 0 6 

f:7 ..... i r?-s t  0 0 0 0 

which is done  in lines 38 '-40 ' .  The  first term in this sum cor responds  to the 
lower  three bits of  2 in b inary  r e p r e s e n t a t i o n - - t h e  bits b 2, b 1 are shifted 
to the left because of the mul t ip l icat ion of _r with two and the lowest bit 
is then occupied by i h  since it has  to be added. Fu r the rmore ,  in the defini- 
t ion of  2 we added a one, which is the origin of  the last term in the sum. 
The  a r rays  ixpl(), ixp2(), and ixp3( ) have to be defined as depicted 
in Tab le  VI, where kv = i r l s t  �9 (~bv-#~_ 1) (/~0 = 0). This  modificat ion of 
the d e m o n  ar rays  has of  course to be done in the init ialization procedures.  

A C K N O W L E D G M E N T S  

I am indebted to A. P. Young  for focusing m y  at tent ion on the R F I M  
and the p rob lem with which this pape r  is concerned.  I thank  H. O. Heuer  
for Sending me the complete  code  of  his a lgor i thm described in ref. 3 and 
for useful correspondence.  I a m  grateful to the San Diego  Supercomputer  
Center  and the H L R Z  at  the K F A  Jiilich for  the a l locat ion of compute r  
time. This work  was financially suppor ted  by the Deutsche  Forschungs-  
gemeinschaf t  

R E F E R E N C E S  

1. D. P. Belanger and A. P. Young, J. Mag. Mag. Mater. 100:272 (1991). 
2. N. Ito and Y. Kanada, Supercomputer 25:31 (1988). 
3. H. O. Heuer, Cornput. Phys. Commun, 59:387 (1990). 
4. D. Stauffer, C. Hartzstein, K. Binder, and A. Aharony, Z. Phys. B 55:325 (1984). 
5. A. P. Young and M. Nauenberg, Phys. Rev. Lett. 54:2429 (1985). 
6. R. Tausworth, Math. Comput. 19:201 (1965). 
7. E. Bhanot, D. Duke, and R. Salvador, J. Stat. Phys. 44:85 (1986). 
8. F. Bagnoli, lnt. J. Mod, Phys. 3:307 (1991). 
9. H. Rieger and A. P. Young, in preparation. 

Communicated by D. Stauffer 


